
Static Analysis
The Workhorse of a End-to-End Securitye Testing Strategy

Achim D. Brucker
a.brucker@sheffield.ac.uk http://www.brucker.uk/

Department of Computer Science, The University of Sheffield, Sheffield, UK

Winter School SECENTIS 2016
Security and Trust of Next Generation Enterprise Information Systems

February 8–12, 2016, Trento, Italy

http://www.brucker.uk/
mailto:"Achim D. Brucker" <a.brucker@sheffield.ac.uk>
http://www.brucker.uk/

Static Analysis: The Workhorse of a End-to-End Securitye Testing Strategy

Abstract

Security testing is an important part of any security development lifecycle (SDL) and, thus, should be a part of
any software (development) lifecycle. Still, security testing is often understood as an activity done by security
testers in the time between “end of development” and “offering the product to customers.”
Learning from traditional testing that the fixing of bugs is the more costly the later it is done in development,
security testing should be integrated, as early as possible, into the daily development activities. The fact that
static analysis can be deployed as soon as the first line of code is written, makes static analysis the right
workhorse to start security testing activities.
In this lecture, I will present a risk-based security testing strategy that is used at a large European software
vendor. While this security testing strategy combines static and dynamic security testing techniques, I will
focus on static analysis. This lecture provides a introduction to the foundations of static analysis as well as
insights into the challenges and solutions of rolling out static analysis to more than 20000 developers,
distributed across the whole world.

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 2

Our Plan

Today:

Tomorrow:

Background and how it works ideally

(Ugly) real world problems and challenges
(or why static analysis is “undecideable” in practice)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 3

Our Plan

Today:

Tomorrow:

Background and how it works ideally

(Ugly) real world problems and challenges
(or why static analysis is “undecideable” in practice)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 3

Our Plan

Today:

Tomorrow:

Background and how it works ideally

(Ugly) real world problems and challenges
(or why static analysis is “undecideable” in practice)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 3

Part I

Background, Motivation, and

An Introduction to Pragmatic Static Analysis

Outline

1 Background

2 Motivation

3 An Introduction to Pragmatic Static Analysis (Code Scanning)

4 Conclusion

Outline

1 Background

2 Motivation

3 An Introduction to Pragmatic Static Analysis (Code Scanning)

4 Conclusion

Background Personal Background

Personal Background
From Academia to Industry and Back Again . . .

Until 11/2007:

PhD student and PostDoc stay at ETH Zurich, Switzerland

Until 11/2015:
Member of the central security team, SAP SE (Germany)

(Global) Security Testing Strategist
Security Research Expert/Architect

Work areas:

Defining the risk-based Security Testing Strategy of SAP
Introducing SAST and DAST tools at SAP
Identify white spots and evaluate and improve tools/methods
Secure Software Development Lifecycle integration
Applied security research
. . .

Since 12/2015:

Senior Lecturer (Security, Testing & Verification, Formal Methods),
The University of Sheffield, UK

http://www.brucker.ch/

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 7

http://www.brucker.ch/

Background Personal Background

SAP SE

Leader in Business Software

Cloud
Mobile
On premise

Many different technologies and platforms, e.g.,

In-memory database and application server (HANA)
Netweaver for ABAP and Java

More than 25 industries

63% of the world’s transaction revenue
touches an SAP system

over 68 000 employees worldwide
over 25 000 software developers

Headquarters: Walldorf, Germany (close to Heidelberg)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 8

Outline

1 Background

2 Motivation

3 An Introduction to Pragmatic Static Analysis (Code Scanning)

4 Conclusion

Motivation Why is Software Security Important to Enterprises

Recent Data Breaches
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 10

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Motivation Why is Software Security Important to Enterprises

Costs of Data Breaches

TJX Company, Inc. (2007) $ 250 million

Sony (2011) $ 170 million

Heartland Payment Systems (2009) $ 41 million

“ A hack not only costs a company money, but also its reputation and the trust of its
customers. It can take years and millions of dollars to repair the damage that a single
computer hack inflicts.

(http://financialedge.investopedia.com/financial-edge/0711/Most-Costly-Computer-Hacks-Of-All-Time.aspx)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 11

http://financialedge.investopedia.com/financial-edge/0711/Most-Costly-Computer-Hacks-Of-All-Time.aspx

Motivation Why is Software Security Important to Enterprises

Has Sony been Hacked this Week?
http://hassonybeenhackedthisweek.com/

Time-line of the Sony Hack(s) (excerpt):

2011-04-20 Sony PSN goes down

2011-05-21 Sony BMG Greece: data 8300 users (SQL Injection)

2011-05-23 Sony Japanese database leaked (SQL Injection)

2011-05-24 Sony Canada: roughly 2,000 leaked (SQL Injection)

2011-06-05 Sony Pictures Russia (SQL Injection)

2011-06-06 Sony Portugal: SQL injection, iFrame injection and XSS

2011-06-20 20th breach within 2 months
177k email addresses were grabbed via a SQL injection

(http://hassonybeenhackedthisweek.com/history)

Consequences:

account data of close to 100 million individuals exposed

over 12 million credit and debit cards compromised

more than 55 class-action lawsuits

costs of $ 170 million only in 2011
A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 12

http://hassonybeenhackedthisweek.com/
http://hassonybeenhackedthisweek.com/history

Motivation What Are Causes For Vulnerabilities?

A Bluffers Guide to SQL Injection (1/2)

Assume an SQL Statement for selecting all users with “userName” from table “user”:

stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’" + userName + "’;"

What happens if we choose the following userName:

userName = "’ or ’1’=’1"

Resulting in the following statement:

stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’’ or ’1’=’1’;"

Which is equivalent to

stmt = "SELECT * FROM ‘users‘;"

selecting the information of all users stored in the table ‘users’!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 13

Motivation What Are Causes For Vulnerabilities?

A Bluffers Guide to SQL Injection (1/2)

Assume an SQL Statement for selecting all users with “userName” from table “user”:

stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’" + userName + "’;"

What happens if we choose the following userName:

userName = "’ or ’1’=’1"

Resulting in the following statement:

stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’’ or ’1’=’1’;"

Which is equivalent to

stmt = "SELECT * FROM ‘users‘;"

selecting the information of all users stored in the table ‘users’!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 13

Motivation What Are Causes For Vulnerabilities?

A Bluffers Guide to SQL Injection (1/2)

Assume an SQL Statement for selecting all users with “userName” from table “user”:

stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’" + userName + "’;"

What happens if we choose the following userName:

userName = "’ or ’1’=’1"

Resulting in the following statement:

stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’’ or ’1’=’1’;"

Which is equivalent to

stmt = "SELECT * FROM ‘users‘;"

selecting the information of all users stored in the table ‘users’!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 13

Motivation What Are Causes For Vulnerabilities?

A Bluffers Guide to SQL Injection (1/2)

Assume an SQL Statement for selecting all users with “userName” from table “user”:

stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’" + userName + "’;"

What happens if we choose the following userName:

userName = "’ or ’1’=’1"

Resulting in the following statement:

stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’’ or ’1’=’1’;"

Which is equivalent to

stmt = "SELECT * FROM ‘users‘;"

selecting the information of all users stored in the table ‘users’!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 13

Motivation What Are Causes For Vulnerabilities?

A Bluffers Guide to SQL Injection (2/2)

void selectUser(HttpServletRequest req, HttpServletResponse resp)
throws IOException {

String userName = req.getParameter("fName"); // source

String stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’"
+ userName +"’;"

SQL.exec(stmt); //sink
}

Many vulnerabilities have similar causes:
cross-site-scripting (XSS), code-injection, buffer-overflows, . . .

Root cause of a wide range of vulnerabilities
“bad” programming
mis-configuration

Warning:
for preventing SQL injections, consider the use of prepared statements
do whitelisting (specify what is allowed) and do not blacklisting

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 14

Motivation What Are Causes For Vulnerabilities?

A Bluffers Guide to SQL Injection (2/2)

void selectUser(HttpServletRequest req, HttpServletResponse resp)
throws IOException {

String userName = req.getParameter("fName"); // source

String stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’"
+ userName +"’;"

SQL.exec(stmt); //sink
}

Many vulnerabilities have similar causes:
cross-site-scripting (XSS), code-injection, buffer-overflows, . . .

Root cause of a wide range of vulnerabilities
“bad” programming
mis-configuration

Warning:
for preventing SQL injections, consider the use of prepared statements
do whitelisting (specify what is allowed) and do not blacklisting

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 14

Motivation What Are Causes For Vulnerabilities?

A Bluffers Guide to SQL Injection (2/2)

void selectUser(HttpServletRequest req, HttpServletResponse resp)
throws IOException {

String userName = req.getParameter("fName"); // source
userName = Security.whitelistOnlyCharacters(userName); // sanitation

String stmt = "SELECT * FROM ‘users‘ WHERE ‘name‘ = ’"
+ userName +"’;"

SQL.exec(stmt); //sink
}

Many vulnerabilities have similar causes:
cross-site-scripting (XSS), code-injection, buffer-overflows, . . .

Root cause of a wide range of vulnerabilities
“bad” programming
mis-configuration

Warning:
for preventing SQL injections, consider the use of prepared statements
do whitelisting (specify what is allowed) and do not blacklisting

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 14

Motivation What Are Causes For Vulnerabilities?

Vulnerability Distribution Since 1999

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0

500

1000

1500

2000

2500

3000

Code Execution DoS Overflow Memory Corruption Sql Injection
XSS Directory Traversal Bypass something Gain Privileges CSRF

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 15

Motivation Security Critical Systems Are Small . . .

Security-critical (And Safety-critical) Systems Are Small, Right?

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 16

Motivation Security Critical Systems Are Small . . .

Security-critical (And Safety-critical) Systems Are Small, Right?

Pacemaker:

ca. 100 000 LoC

supports wireless configuration (up to 50m distance)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 16

Motivation Security Critical Systems Are Small . . .

Security-critical (And Safety-critical) Systems Are Small, Right?

Pacemaker:

ca. 100 000 LoC

supports wireless configuration (up to 50m distance)

Typical car:

ca. 1 000 000 LoC, distributed across ca. 60 ECUs

ca. 100 000 000 LoC including satnav and entertainment

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 16

Motivation Security Critical Systems Are Small . . .

Security-critical (And Safety-critical) Systems Are Small, Right?

Pacemaker:

ca. 100 000 LoC

supports wireless configuration (up to 50m distance)

Typical car:

ca. 1 000 000 LoC, distributed across ca. 60 ECUs

ca. 100 000 000 LoC including satnav and entertainment

Aircraft:

ca. 8 000 000 LoC (on-board), distributed across ca. 200 ECUs

ca. 16 000 000 LoC (off-airframe)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 16

Motivation Security Critical Systems Are Small . . .

Security-critical (And Safety-critical) Systems Are Small, Right?

Pacemaker:

ca. 100 000 LoC

supports wireless configuration (up to 50m distance)

Typical car:

ca. 1 000 000 LoC, distributed across ca. 60 ECUs

ca. 100 000 000 LoC including satnav and entertainment

Aircraft:

ca. 8 000 000 LoC (on-board), distributed across ca. 200 ECUs

ca. 16 000 000 LoC (off-airframe)

Enterprise System (SAP):

ca. 500 000 000 LoC (without user interfaces)

ca. 200 000 screens (user interface definitions)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 16

Motivation Security Critical Systems Are Small . . .

Evolution of Source Code

Increase in

code size
code complexity
number of products
product versions
used technologies
(prog. languages,
frameworks)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 17

Motivation Security Critical Systems Are Small . . .

Languages Used at SAP

ABAP

Java

C

JavaScript

Others

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 18

Outline

1 Background

2 Motivation

3 An Introduction to Pragmatic Static Analysis (Code Scanning)

4 Conclusion

An Introduction to Pragmatic Static Analysis (Code Scanning) Introduction: Pragmatic Static Code Analysis

A Few Questions

1 You are responsible for quality assurance for a large scale IT system (> 10 000 000 LoC)

What do you have your team do?
Follow coding standards?
Test-driven Development?
Use Formal Methods?

2 Your system is safety or security critical

What changes from #1?
Does the distinction between safety versus security matter?

3 You are a researcher building code analysis tools.

How do you migrate them to large-scale applications?
What are the challenges in practise?
Would you invest in a high quality (sound???) analysis?
Would you invest a good integration into the development environment?

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 20

An Introduction to Pragmatic Static Analysis (Code Scanning) Introduction: Pragmatic Static Code Analysis

A Few Questions

1 You are responsible for quality assurance for a large scale IT system (> 10 000 000 LoC)

What do you have your team do?
Follow coding standards?
Test-driven Development?
Use Formal Methods?

2 Your system is safety or security critical

What changes from #1?
Does the distinction between safety versus security matter?

3 You are a researcher building code analysis tools.

How do you migrate them to large-scale applications?
What are the challenges in practise?
Would you invest in a high quality (sound???) analysis?
Would you invest a good integration into the development environment?

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 20

An Introduction to Pragmatic Static Analysis (Code Scanning) Introduction: Pragmatic Static Code Analysis

A Few Questions

1 You are responsible for quality assurance for a large scale IT system (> 10 000 000 LoC)

What do you have your team do?
Follow coding standards?
Test-driven Development?
Use Formal Methods?

2 Your system is safety or security critical

What changes from #1?
Does the distinction between safety versus security matter?

3 You are a researcher building code analysis tools.

How do you migrate them to large-scale applications?
What are the challenges in practise?
Would you invest in a high quality (sound???) analysis?
Would you invest a good integration into the development environment?

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 20

An Introduction to Pragmatic Static Analysis (Code Scanning) Introduction: Pragmatic Static Code Analysis

Pragmatic Static Analysis
The Coverity Experience

Coverity: a tool for finding generic errors in C/C++ code

Company goal: make money (and build a user community around the tool)

Guiding principle: if it helps developers to avoid bugs, it’s good

Focus on finding bugs/errors, not proving their absence

Embrace unsoundness (Focus on low hanging fruit)!

“ Circa 2000, unsoundness was controversial in the research community, though it has
since become almost a de facto tool bias for commercial products and many research
projects.

A few billion lines of code later, CACM, 2010.

Usability and simplicity are critical!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 21

An Introduction to Pragmatic Static Analysis (Code Scanning) What We Want to Find

What We Want to Find
Programming Patterns That May Cause Security Vulnerabilities

Mainly two patterns
Local issues (no data-flow dependency), e.g.,

Insecure functions

var x = Math.random();

Secrets stored in the source code

var password = ’secret’;

Data-flow related issues, e.g.,

Cross-site Scripting (XSS)

var docref = document.location.href;
var input = docref.substring(

docref.indexOf("default=")+8);
var fake = function (x) {return x;}
var cleanse = function (x) {

return ’hello world’;}
document.write(fake(input));
document.write(cleanse(uinput));

Secrets stored in the source code

var foo = ’secret’;
var x = decrypt(foo,data);

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 22

An Introduction to Pragmatic Static Analysis (Code Scanning) What We Want to Find

What We Want to Find
Programming Patterns That May Cause Security Vulnerabilities

Mainly two patterns
Local issues (no data-flow dependency), e.g.,

Insecure functions

var x = Math.random();

Secrets stored in the source code

var password = ’secret’;

Data-flow related issues, e.g.,

Cross-site Scripting (XSS)

var docref = document.location.href;
var input = docref.substring(

docref.indexOf("default=")+8);
var fake = function (x) {return x;}
var cleanse = function (x) {

return ’hello world’;}
document.write(fake(input));
document.write(cleanse(uinput));

Secrets stored in the source code

var foo = ’secret’;
var x = decrypt(foo,data);

We tru
st

our developers,
i.e

., we are

focu
sin

g on finding “obvious”
bugs.

We do not need to
do a sound

verifi
catio

n.

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 22

An Introduction to Pragmatic Static Analysis (Code Scanning) What We Want to Find

What We Want to Find
Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors (Tsipenyuk, Chess, and McGraw)

1 Input Validation and Representation
Buffer overflows, command injection, . . .

2 API Abuse
Dangerous functions, unchecked return values, . . .

3 Security Features
Insecure randomness, password management, . . .

4 Time and State
Deadlocks, race conditions, . . .

5 Errors
Catching null pointer ex., empty catch blocks, . . .

6 Code Quality
Double free, memory leak, . . .

7 Encapsulation
Comparing classes by name, leftover debug code, . . .

* Environment: J2EE misconfigurations . . .
A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 23

An Introduction to Pragmatic Static Analysis (Code Scanning) What We Want to Find

What We Can Expect to Find

visible in the code visible only in the design
g

e
n

e
ri

c
d

e
fe

c
ts

Static analysis sweet spot.
Built-in rules make it easy for
tools to find these without
programmer guidance.
Example: buffer overflows

Most likely to be found through
architectural analysis.
Example: the program exe-
cutes code downloaded as an
email attachement

c
o
n

te
x
t

s
p

e
c
ifi

c
d

e
fe

c
ts

Possible to find with static anal-
ysis, but customisation may be
required.
Example: mishandling of credit
card information.

Requires both understanding
of general security principles
along with domain-specific ex-
pertise.
Example: cryptographic keys
kept in use for an unsafe dura-
tion.

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 24

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

The Core Technologies of Pragmatic Static Analysis

Pragmatic static analysis is based on

successful developments from research community:

Type checking
Property checking (model-checking, SMT solving, etc.)
Abstract interpretation
. . .

techniques from the software engineering community

Style Checking
Program comprehension
Security reviews
. . .

Let’s look at examples . . .

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 25

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

The Core Technologies of Pragmatic Static Analysis

Pragmatic static analysis is based on

successful developments from research community:

Type checking
Property checking (model-checking, SMT solving, etc.)
Abstract interpretation
. . .

techniques from the software engineering community

Style Checking
Program comprehension
Security reviews
. . .

Let’s look at examples . . .

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 25

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Type Checking

The Java compiler will flag the following as an error. Is it?

short s = 0;
int i = s;
short r = i;

How about this:

Object [] objs = new String[1];
objs[0] = new Object();

What happens at runtime?

Type checkers are useful

But may suffer from false positives/negatives
Identifying which computations are harmful is undecidable

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 26

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Type Checking

The Java compiler will flag the following as an error. Is it?

short s = 0;
int i = s;
short r = i;

How about this:

Object [] objs = new String[1];
objs[0] = new Object();

What happens at runtime?

Type checkers are useful

But may suffer from false positives/negatives
Identifying which computations are harmful is undecidable

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 26

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Type Checking

The Java compiler will flag the following as an error. Is it?

short s = 0;
int i = s;
short r = i;

How about this:

Object [] objs = new String[1];
objs[0] = new Object();

What happens at runtime?

Type checkers are useful

But may suffer from false positives/negatives
Identifying which computations are harmful is undecidable

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 26

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Style Checkers

Enforce more picker and more superficial rules than
type checkers

Some compiler can check these, e.g.,

gcc -Wall enum.c
enum.c:5: warning: enumeration value ’green’

not handled in switch
enum.c:5: warning: enumeration value ’blue’

not handled in switch

Or consider x == 0 vs. 0 == x

Style checkers are often extensible, e.g.,

PMD (https://pmd.github.io/) for Java
JSHint (http://jshint.com/) for JavaScript

Simple, but very successful in practice

typedef enum { red, green, blue } Color;
char* getColorString(Color c) {
char* ret = NULL;
switch (c) {
case red:

printf("red");
}
return ret;
}

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 27

https://pmd.github.io/
http://jshint.com/

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Program Understanding

Tools can help with

Understanding large code bases
Reverse engineering abstractions
Finding declarations and uses
Analysing dependencies
. . .

Useful for manual code/architectural reviews

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 28

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Bug (Pattern) Finders

Work with a fault model of typical mistakes

Person person = aMap.get("bob");
if (person != null) {
person.updateAccessTime();
}
String name = person.getName();

Null-pointer de-reference

String b = "bob";
b.replace(’b’, ’p’);
if(b.equals("pop"))

Ignored return values

Findbugs (http://findbugs.sourceforge.net/) is a good example for Java

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 29

http://findbugs.sourceforge.net/

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Bug (Pattern) Finders

Work with a fault model of typical mistakes

Person person = aMap.get("bob");
if (person != null) {
person.updateAccessTime();
}
String name = person.getName();

Null-pointer de-reference

String b = "bob";
b.replace(’b’, ’p’);
if(b.equals("pop"))

Ignored return values

Findbugs (http://findbugs.sourceforge.net/) is a good example for Java

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 29

http://findbugs.sourceforge.net/

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Bug (Pattern) Finders

Work with a fault model of typical mistakes

Person person = aMap.get("bob");
if (person != null) {
person.updateAccessTime();
}
String name = person.getName();

Null-pointer de-reference

String b = "bob";
b.replace(’b’, ’p’);
if(b.equals("pop"))

Ignored return values

Findbugs (http://findbugs.sourceforge.net/) is a good example for Java

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 29

http://findbugs.sourceforge.net/

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Bug (Pattern) Finders

Work with a fault model of typical mistakes

Person person = aMap.get("bob");
if (person != null) {
person.updateAccessTime();
}
String name = person.getName();

Null-pointer de-reference

String b = "bob";
b.replace(’b’, ’p’);
if(b.equals("pop"))

Ignored return values

Findbugs (http://findbugs.sourceforge.net/) is a good example for Java

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 29

http://findbugs.sourceforge.net/

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Bug (Pattern) Finders

Work with a fault model of typical mistakes

Person person = aMap.get("bob");
if (person != null) {
person.updateAccessTime();
}
String name = person.getName();

Null-pointer de-reference

String b = "bob";
b.replace(’b’, ’p’);
if(b.equals("pop"))

Ignored return values

Findbugs (http://findbugs.sourceforge.net/) is a good example for Java

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 29

http://findbugs.sourceforge.net/

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Bug (Pattern) Finders

Work with a fault model of typical mistakes

Person person = aMap.get("bob");
if (person != null) {
person.updateAccessTime();
}
String name = person.getName();

Null-pointer de-reference

String b = "bob";
b.replace(’b’, ’p’);
if(b.equals("pop"))

Ignored return values

Findbugs (http://findbugs.sourceforge.net/) is a good example for Java

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 29

http://findbugs.sourceforge.net/

An Introduction to Pragmatic Static Analysis (Code Scanning) The Tool Box of Pragmatic Static Analysis

Sound Methods

Software model checking

All the nice methods Anders Møller introduced

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 30

An Introduction to Pragmatic Static Analysis (Code Scanning) Let’s Look at Enterprise-read Scan Tools

Checkmarx: Presentation of Scan Results

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 31

An Introduction to Pragmatic Static Analysis (Code Scanning) Let’s Look at Enterprise-read Scan Tools

Checkmarx: Per Project Reporting

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 32

An Introduction to Pragmatic Static Analysis (Code Scanning) Let’s Look at Enterprise-read Scan Tools

Checkmarx: Dashboard

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 33

An Introduction to Pragmatic Static Analysis (Code Scanning) Let’s Look at Enterprise-read Scan Tools

HP WebInspect

Tool Demo!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 34

Outline

1 Background

2 Motivation

3 An Introduction to Pragmatic Static Analysis (Code Scanning)

4 Conclusion

Conclusion

Conclusion

There are a wide range of tools available that help developers to implement systems
securely, safely, and reliably!

Next: How to apply them in a large organisation . . .

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 36

Part II

Applying Static (And Dynamic) Analysis At SAP

Outline

5 Introducing Static Analysis

6 Application Security at SAP

7 Lesson’s Learned

8 Industry Trends

9 Conclusion

Outline

5 Introducing Static Analysis

6 Application Security at SAP

7 Lesson’s Learned

8 Industry Trends

9 Conclusion

Introducing Static Analysis

Finding Security Vulnerabilities

You are responsible for quality assurance for a large scale IT system (> 10 000 000 LoC)

What do you have your team do?

Sounds easy, right?

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 40

Introducing Static Analysis

Finding Security Vulnerabilities

You are responsible for quality assurance for a large scale IT system (> 10 000 000 LoC)

What do you have your team do?

Sounds easy, right?

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 40

Introducing Static Analysis

Finding Security Vulnerabilities

You are responsible for quality assurance for a large scale IT system (> 10 000 000 LoC)

What do you have your team do?

Sounds easy, right?

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 40

Introducing Static Analysis

In 2010: Static Analysis Becomes Mandatory

ABAP

Java

C

JavaScript

Others

SAST tools used at SAP:

Language Tool Vendor

ABAP CodeProfiler Virtual Forge
Others Fortify HP

Since 2010, mandatory for all SAP products

Multiple billions lines analysed

Constant improvement of tool configuration

Further details:
Deploying Static Application Security Testing on a Large
Scale. In GI Sicherheit 2014. Lecture Notes in Informatics,
228, pages 91-101, GI, 2014.

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 41

Introducing Static Analysis

So Everything is Secure Now, Right?

“ Our tool reports all vulnerabilities in your software – you only need to fix them and you
are secure.

Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):

The cat tool reports each line, that might contain a vulnerability:

It supports also a mode that reports no false positives:

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 42

Introducing Static Analysis

So Everything is Secure Now, Right?

“ Our tool reports all vulnerabilities in your software – you only need to fix them and you
are secure.

Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):

The cat tool reports each line, that might contain a vulnerability:

It supports also a mode that reports no false positives:

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 42

Introducing Static Analysis

So Everything is Secure Now, Right?

“ Our tool reports all vulnerabilities in your software – you only need to fix them and you
are secure.

Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):

The cat tool reports each line, that might contain a vulnerability:

It supports also a mode that reports no false positives:

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 42

Introducing Static Analysis

So Everything is Secure Now, Right?

“ Our tool reports all vulnerabilities in your software – you only need to fix them and you
are secure.

Undisclosed sales engineer from a SAST tool vendor.

Yes, this tools exists! It is called Code Assurance Tool (cat):

The cat tool reports each line, that might contain a vulnerability:
It supports also a mode that reports no false positives:

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 42

Outline

5 Introducing Static Analysis

6 Application Security at SAP
How Application Security is Organized at SAP
(Risk-based) Security Testing at SAP
Measuring Success and Identifying White Spots

7 Lesson’s Learned

8 Industry Trends
Agile Development (Towards SecDevOps)
From Dynamic to Static and Back Again

9 Conclusion

Application Security at SAP How Application Security is Organized at SAP

Moving to a De-Centralized Application Security Approach
How SAP’s Application Development Approach Developed Over Time

Governance & approvals De-centralized approach

2009 2016

One Two SAST tools fit all

VF CodeProfiler
Fortify

Blending of Security Testing Tools

SAST:
SAP Netweaver CVA Add-on, Fortify,
Synopsis Coverity, Checkmarx, Breakman
DAST:
HP WebInspect, Quotium Seeker
Others:
Burp Suite, OWASP ZAP, Codinomicon
Fuzzer, BDD

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 44

Application Security at SAP How Application Security is Organized at SAP

SAP Uses a De-centralised Secure Development Approach

Central security expert team (S2DL owner)

Organizes security trainings
Defines product standard “Security”
Defines risk and threat assessment methods
Defines security testing strategy
Selects and provides security testing tools
Validates products
Defines and executes response process

Local security experts

Embedded into development teams
Organize local security activities
Support developers and architects
Support product owners (responsibles)

Development teams

Select technologies
Select development model
Design and execute security testing
plan
. . .

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 45

Application Security at SAP How Application Security is Organized at SAP

Focus of the Central Security Team: Security Testing for Developers

Security testing tools for developers, need to

Be applicable from the start of
development

Automate the security knowledge

Be deeply integrated into the dev. env.,
e.g.,

IDE (instant feedback)
Continuous integration

Provide easy to understand fix
recommendations

Declare their “sweet spots”

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 46

Outline

5 Introducing Static Analysis

6 Application Security at SAP
How Application Security is Organized at SAP
(Risk-based) Security Testing at SAP
Measuring Success and Identifying White Spots

7 Lesson’s Learned

8 Industry Trends
Agile Development (Towards SecDevOps)
From Dynamic to Static and Back Again

9 Conclusion

Application Security at SAP (Risk-based) Security Testing at SAP

Combining Multiple Security Testing Methods and Tools

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Risks of only using only SAST

Wasting effort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations

Not all programming languages supported
Covers not all layers of the software stack

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 48

Application Security at SAP (Risk-based) Security Testing at SAP

Combining Multiple Security Testing Methods and Tools

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Checkmarx (JavaScript)

Fortify (Java) Coverity (C/C++)

Risks of only using only SAST

Wasting effort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations

Not all programming languages supported
Covers not all layers of the software stack

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 48

Application Security at SAP (Risk-based) Security Testing at SAP

Combining Multiple Security Testing Methods and Tools

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Checkmarx (JavaScript)

Fortify (Java)

D
O

M
in

a
to

r

Coverity (C/C++)

H
P

 W
e

b
In

s
p

e
c
t

/
IB

M
 A

p
p

S
c
a

n

Risks of only using only SAST

Wasting effort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations

Not all programming languages supported
Covers not all layers of the software stack

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 48

Application Security at SAP (Risk-based) Security Testing at SAP

Combining Multiple Security Testing Methods and Tools

Client Application

Web Browser

Server Application

Runtime Container

Backend Systems

Checkmarx

Fortify (Java)

D
O

M
in

a
to

r

H
P

 W
e

b
In

s
p

e
c
t

/
IB

M
 A

p
p

S
c
a

n

Risks of only using only SAST

Wasting effort that could be used more wisely
elsewhere
Shipping insecure software

Examples of SAST limitations

Not all programming languages supported
Covers not all layers of the software stack

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 48

Application Security at SAP (Risk-based) Security Testing at SAP

SAP’ Secure Software Development Lifecycle (S2DL)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 49

Application Security at SAP (Risk-based) Security Testing at SAP

Security Validation

Acts as first customer

Is not a replacement for security testing during development

Security Validation

Check for “flaws” in the implementation of the S2DL
Ideally, security validation finds:
No issues that can be fixed/detected earlier
Only issues that cannot be detect earlier
(e.g., insecure default configurations, missing security documentation)

Penetration tests in productive environments are different:

They test the actual configuration

They test the productive environment (e.g., cloud/hosting)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 50

Application Security at SAP (Risk-based) Security Testing at SAP

Security Validation

Acts as first customer

Is not a replacement for security testing during development

Security Validation

Check for “flaws” in the implementation of the S2DL
Ideally, security validation finds:
No issues that can be fixed/detected earlier
Only issues that cannot be detect earlier
(e.g., insecure default configurations, missing security documentation)

Penetration tests in productive environments are different:

They test the actual configuration

They test the productive environment (e.g., cloud/hosting)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 50

Application Security at SAP (Risk-based) Security Testing at SAP

SAST and DAST as Part of the S2DL
Security Testing Plan and Security Testing Report

7

Security Test

Plan

Security

Validation Report

Start of development Shipment decision

Training
Risk

Identification
Plan Security

Measures
Secure

development
Security
testing

Security
Validation

Security
Response

Security Test

Report

Security Measure Plan

Security Testing Plan

•Based on Security Risk
Identification and Mitigation
Report (Threat Modelling,
SECURIM)

•Describes planned security testing
activities

•Completeness and plausibility
check by validation or security
enablement team

Security Measure Report

Security Testing Report

•Result of executed security testing
activities (e.g., code scan report)

•Describes deviations from plan

•Input for validation and operation
(cloud)

Figure: SAP SSDL

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 51

Application Security at SAP (Risk-based) Security Testing at SAP

A Risk-based Test Plan

Select from a
list of

predefined
application

types

Implementation
detao;s ,e.g.,
programming
languages,
frameworks

Priority of SAP
Security

Requirements

Security
Test
Plan

RISK ASSESMENT

(e.g., SECURIM, Threat Modelling, OWASP ASVS)
Combines multiple security testing methods, e.g.,
code scans, dynamic analysis, manual penetration
testing or fuzzing

Selects the most efficient test tools and test cases
based on the risks and the technologies used in the
project

Re-adjusts priorities of test cases based on identified
risks for the project

Monitors false negative findings in the results of risk
assessment

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 52

Outline

5 Introducing Static Analysis

6 Application Security at SAP
How Application Security is Organized at SAP
(Risk-based) Security Testing at SAP
Measuring Success and Identifying White Spots

7 Lesson’s Learned

8 Industry Trends
Agile Development (Towards SecDevOps)
From Dynamic to Static and Back Again

9 Conclusion

Application Security at SAP Measuring Success and Identifying White Spots

A Lethal Question

Assume you implemented all this, which

costs a zillion of dollars license fees each year and

results in a significant portion of your developers working on improving security
instead of new features/products.

Now your boss enters your office and asks only one question:

Can you justify these costs/efforts?

Not answering is not an option:

you might be fired

the security program will be killed

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 54

Application Security at SAP Measuring Success and Identifying White Spots

A Lethal Question

Assume you implemented all this, which

costs a zillion of dollars license fees each year and

results in a significant portion of your developers working on improving security
instead of new features/products.

Now your boss enters your office and asks only one question:

Can you justify these costs/efforts?

Not answering is not an option:

you might be fired

the security program will be killed

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 54

Application Security at SAP Measuring Success and Identifying White Spots

How to Measure Success (and Identify White Spots)

Analyze the vulnerabilities reported by

Security Validation
External security researchers

Vulnerability not detected by currently used methods

Improve tool configuration
Introduce new tools

Vulnerability detected by our security testing tools

Vulnerability in older software release
Analyze reason for missing vulnerability

Covered

Not Covered

Success criteria:
Percentage of vulnerabilities not covered by our security testing tools increases

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 55

Application Security at SAP Measuring Success and Identifying White Spots

How to Measure Success (and Identify White Spots)

Analyze the vulnerabilities reported by

Security Validation
External security researchers

Vulnerability not detected by currently used methods

Improve tool configuration
Introduce new tools

Vulnerability detected by our security testing tools

Vulnerability in older software release
Analyze reason for missing vulnerability

Covered

Not Covered

Success criteria:
Percentage of vulnerabilities not covered by our security testing tools increases

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 55

Application Security at SAP Measuring Success and Identifying White Spots

How to Measure Success (and Identify White Spots)

Analyze the vulnerabilities reported by

Security Validation
External security researchers

Vulnerability not detected by currently used methods

Improve tool configuration
Introduce new tools

Vulnerability detected by our security testing tools

Vulnerability in older software release
Analyze reason for missing vulnerability

Covered

Not Covered

Success criteria:
Percentage of vulnerabilities not covered by our security testing tools increases

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 55

Application Security at SAP Measuring Success and Identifying White Spots

How to Measure Success (and Identify White Spots)

Analyze the vulnerabilities reported by

Security Validation
External security researchers

Vulnerability not detected by currently used methods

Improve tool configuration
Introduce new tools

Vulnerability detected by our security testing tools

Vulnerability in older software release
Analyze reason for missing vulnerability

Covered

Not Covered

Newly
Covered

Success criteria:
Percentage of vulnerabilities not covered by our security testing tools increases

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 55

Outline

5 Introducing Static Analysis

6 Application Security at SAP
How Application Security is Organized at SAP
(Risk-based) Security Testing at SAP
Measuring Success and Identifying White Spots

7 Lesson’s Learned

8 Industry Trends
Agile Development (Towards SecDevOps)
From Dynamic to Static and Back Again

9 Conclusion

Lesson’s Learned

Key Success Factors

A holistic security awareness program for

Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 57

Lesson’s Learned

Key Success Factors

A holistic security awareness program for

Developers
Managers

Yes, security awareness is important

but

Developer awareness is even more important!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 57

Lesson’s Learned

Key Success Factors

A holistic security awareness program for

Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 57

Lesson’s Learned

Key Success Factors

A holistic security awareness program for

Developers
Managers

Yes, security awareness is important but

Developer awareness is even more important!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 57

Lesson’s Learned

Listen to Your Developers And Make Their Life Easy!

We are often talking about a lack of security awareness and, by that,
forget the problem of lacking development awareness.

Building a secure system more difficult than finding a successful attack.

Do not expect your developers to become penetration testers (or security experts)!

Often, organisations make it hard for developers to apply their security testing skills!

Don’t ask developers to do security testing, if their work contract doesn’t allow for it

Budget application security activities centrally
(in particular, in a decentralised model)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 58

Lesson’s Learned

Recommendations for Selecting Security Testing Tools

Select tools that are

easy to integrate into your development process and tools

central scan infrastructure
source code upload, CLI, Jenkins, github, . . .

easy to use by developers

easy to understand descriptions of findings
actionable fix recommendations

easy to adapt to your security policies and prioritisation

report issues that are relevant for you
focus developers effort on the issues that are critical for you

allow for tracking your success

tool internal reporting
interfaces to your own reporting infrastructure

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 59

Outline

5 Introducing Static Analysis

6 Application Security at SAP
How Application Security is Organized at SAP
(Risk-based) Security Testing at SAP
Measuring Success and Identifying White Spots

7 Lesson’s Learned

8 Industry Trends
Agile Development (Towards SecDevOps)
From Dynamic to Static and Back Again

9 Conclusion

Industry Trends Agile Development (Towards SecDevOps)

Agile Development

What is agile for you?
SCRUM, Continuous Delivery, DevOps, SCRUM, Cloud development, . . .
Cloud/agile development lifecycle

t

Deliveries

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 61

Industry Trends Agile Development (Towards SecDevOps)

Secure Agile Development

Level of TrustLevel of Trust Risk IdentificationRisk Identification

Threat ModellingThreat Modelling

Security
Measures
Security

Measures

Security
Testing

Security
Testing

PSC SecurityPSC Security

Risk Mitigation & TestingRisk Mitigation & Testing

Static TestingStatic Testing

Dynamic TestingDynamic Testing

Manual TestingManual Testing

Security ValidationSecurity Validation

Secure ProgrammingSecure Programming

Security
Response
Security

Response

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 62

Industry Trends Agile Development (Towards SecDevOps)

Secure Agile Development and SecDevOps
Open (Research) Questions

Social aspects

Does the SecDevOps model increase security awareness?
(Developers and their managers are also responsible for operational risks)
Does this impact the willingness to take (security) risks and/or the risk assessment?

Process and organisational aspects

What services should be offered centrally?
How to ensure a certain level of security across all products?
How to ensure a certain level of security across the end-to-end supply chain?

Technical and fundamental aspects

How do we need to adapt development support
How do we need to adapt threat modelling or risk assessment methods
How do we need to adapt security testing techniques

The big challenge in practice:
Products are often offered in the cloud (SaaS) and on premise

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 63

Industry Trends From Dynamic to Static and Back Again

From Dynamic to Static and Back Again
Observations

Let’s have a look on memory corruption analysis

until 1995: random testing, simple fuzzing

1995-2005: the decade of runtime analysis (dynamic testing)

2005-2015: the decade of static analysis

2015-????: dynamic approaches and combined techniques are getting popular

(dates are rough estimates)

There are (at least) two reasons why people are looking again at dynamic approaches:

People are not happy with false-positive e rates of static approaches
(Warning: dynamic approaches are not false-positive free either)

DevOps pushes dynamic approaches to development,
as operations uses pre-dominantly dynamic testing

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 64

Industry Trends From Dynamic to Static and Back Again

From Dynamic to Static and Back Again
A few thoughts (not final conclusions yet)

On the long-run, people will not be happy with (simple) DAST solutions

IAST (concolic testing) is a logical next step
Improved coverage and increased test case complexity (lowering false-negative rate)
Grey-box attack validation (lowering false-positive rate)

My feeling:
Runtime protection is hyped, but hard to sell to traditional software companies (e.g., SAP)

requires a close collaboration of development and operations (close to DevOps)
Why not use runtime-technology (e.g., end-to-end tainting) for security testing during
development

improves results of manual or automated dynamic tests
compute advanced dynamic test cases or rule out false positives

Test systems

are not as performance critical as production systems
are less risky to change (runtime environments, instrumentation, etc.)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 65

Outline

5 Introducing Static Analysis

6 Application Security at SAP
How Application Security is Organized at SAP
(Risk-based) Security Testing at SAP
Measuring Success and Identifying White Spots

7 Lesson’s Learned

8 Industry Trends
Agile Development (Towards SecDevOps)
From Dynamic to Static and Back Again

9 Conclusion

Conclusion

Conclusion

Secure software development is a

prerequisite for the secure and compliant operation
minimises the risk of operating and maintaining IT systems

Developers are your most important ally

Make life easy for them

SAST, DAST (or IAST), and runtime technologies are friends:
they complement each other

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 67

Part III

Problems in Practise

(And Pragmatic Mitigation Strategies)

Outline

10 Why is Static Analysis Hard (Vendor Perspective)?

11 Why is Static Analysis Hard (User Perspective)?

Outline

10 Why is Static Analysis Hard (Vendor Perspective)?

11 Why is Static Analysis Hard (User Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Theory

Problem:
Many properties are undecidable
(recall the nice explanation during the lecture of Anders Møller)

Consequence:

Tools over-approximate: might result in false positives
Tools under-approximate: might result in false negatives

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 71

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Getting And Understanding The Source Files

Where is the code?

Problem: Home-grown build environments (build tools, code repositories, etc.)

Solution:
Wrap build and intercept all system calls

System still needs to build
Mapping issues in translated/pre-processed files back to manually written files

Virtual compiler

What about pre-processed files (software product lines)

You need to parse the input language

Problem: Experience: the C language doesn’t exist
(neither does JavaScript, Perl, ABAP, etc.)

Solution: Relaxed parsing, ignoring unknown constructs

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 72

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Getting And Understanding The Source Files

Where is the code?

Problem: Home-grown build environments (build tools, code repositories, etc.)

Solution:
Wrap build and intercept all system calls

System still needs to build
Mapping issues in translated/pre-processed files back to manually written files

Virtual compiler

What about pre-processed files (software product lines)

You need to parse the input language

Problem: Experience: the C language doesn’t exist
(neither does JavaScript, Perl, ABAP, etc.)

Solution: Relaxed parsing, ignoring unknown constructs

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 72

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Getting And Understanding The Source Files

Where is the code?

Problem: Home-grown build environments (build tools, code repositories, etc.)

Solution:
Wrap build and intercept all system calls

System still needs to build
Mapping issues in translated/pre-processed files back to manually written files

Virtual compiler

What about pre-processed files (software product lines)

You need to parse the input language

Problem: Experience: the C language doesn’t exist
(neither does JavaScript, Perl, ABAP, etc.)

Solution: Relaxed parsing, ignoring unknown constructs

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 72

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Getting And Understanding The Source Files

Where is the code?

Problem: Home-grown build environments (build tools, code repositories, etc.)

Solution:
Wrap build and intercept all system calls

System still needs to build
Mapping issues in translated/pre-processed files back to manually written files

Virtual compiler

What about pre-processed files (software product lines)

You need to parse the input language

Problem: Experience: the C language doesn’t exist
(neither does JavaScript, Perl, ABAP, etc.)

Solution: Relaxed parsing, ignoring unknown constructs

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 72

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Change Management

Ever changing source languages (and compilers/development environments)

Problem: Programming languages change over time (Objective C vs. Java)

Solution: More developers???

Customers expect stable results across upgrades

Problem: Findings should not change across system upgrades
(but you need to improve the tool . . .)

Solution:
Separate engines and rules
Fingerprint (or assign and log unique versions of) rule sets/configuration

Audit/Review results need to be preserved across code changes

Problem: Audits are expensive, thus re-scans should not require a full audit

Solution:
Compute “invariant” hash values of findings

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 73

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Change Management

Ever changing source languages (and compilers/development environments)

Problem: Programming languages change over time (Objective C vs. Java)

Solution: More developers???

Customers expect stable results across upgrades

Problem: Findings should not change across system upgrades
(but you need to improve the tool . . .)

Solution:
Separate engines and rules
Fingerprint (or assign and log unique versions of) rule sets/configuration

Audit/Review results need to be preserved across code changes

Problem: Audits are expensive, thus re-scans should not require a full audit

Solution:
Compute “invariant” hash values of findings

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 73

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Change Management

Ever changing source languages (and compilers/development environments)

Problem: Programming languages change over time (Objective C vs. Java)

Solution: More developers???

Customers expect stable results across upgrades

Problem: Findings should not change across system upgrades
(but you need to improve the tool . . .)

Solution:
Separate engines and rules
Fingerprint (or assign and log unique versions of) rule sets/configuration

Audit/Review results need to be preserved across code changes

Problem: Audits are expensive, thus re-scans should not require a full audit

Solution:
Compute “invariant” hash values of findings

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 73

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Change Management

Ever changing source languages (and compilers/development environments)

Problem: Programming languages change over time (Objective C vs. Java)

Solution: More developers???

Customers expect stable results across upgrades

Problem: Findings should not change across system upgrades
(but you need to improve the tool . . .)

Solution:
Separate engines and rules
Fingerprint (or assign and log unique versions of) rule sets/configuration

Audit/Review results need to be preserved across code changes

Problem: Audits are expensive, thus re-scans should not require a full audit

Solution:
Compute “invariant” hash values of findings

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 73

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Change Management

Ever changing source languages (and compilers/development environments)

Problem: Programming languages change over time (Objective C vs. Java)

Solution: More developers???

Customers expect stable results across upgrades

Problem: Findings should not change across system upgrades
(but you need to improve the tool . . .)

Solution:
Separate engines and rules
Fingerprint (or assign and log unique versions of) rule sets/configuration

Audit/Review results need to be preserved across code changes

Problem: Audits are expensive, thus re-scans should not require a full audit

Solution:
Compute “invariant” hash values of findings

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 73

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Change Management

Ever changing source languages (and compilers/development environments)

Problem: Programming languages change over time (Objective C vs. Java)

Solution: More developers???

Customers expect stable results across upgrades

Problem: Findings should not change across system upgrades
(but you need to improve the tool . . .)

Solution:
Separate engines and rules
Fingerprint (or assign and log unique versions of) rule sets/configuration

Audit/Review results need to be preserved across code changes

Problem: Audits are expensive, thus re-scans should not require a full audit

Solution:
Compute “invariant” hash values of findings

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 73

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Prioritising Findings And Explaining Them

Customers must understand the bugs and care about them

Problem: How to prioritise findings to point users to the important ones?

Solution:

Quality/precision of checks
Length of data-flows
Ranking of sources/sinks

How to explain findings to customers

Problem: Customers need to understand findings to prioritise them as well as develop fixes

Solution:

(Static) fix recommendations pointing to standard recommendations
Computing bet fix locations

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 74

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Prioritising Findings And Explaining Them

Customers must understand the bugs and care about them

Problem: How to prioritise findings to point users to the important ones?

Solution:

Quality/precision of checks
Length of data-flows
Ranking of sources/sinks

How to explain findings to customers

Problem: Customers need to understand findings to prioritise them as well as develop fixes

Solution:

(Static) fix recommendations pointing to standard recommendations
Computing bet fix locations

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 74

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Prioritising Findings And Explaining Them

Customers must understand the bugs and care about them

Problem: How to prioritise findings to point users to the important ones?

Solution:

Quality/precision of checks
Length of data-flows
Ranking of sources/sinks

How to explain findings to customers

Problem: Customers need to understand findings to prioritise them as well as develop fixes

Solution:

(Static) fix recommendations pointing to standard recommendations
Computing bet fix locations

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 74

Why is Static Analysis Hard (Vendor Perspective)?

Why is Static Analysis Hard (Vendor Perspective)?
Practice: Prioritising Findings And Explaining Them

Customers must understand the bugs and care about them

Problem: How to prioritise findings to point users to the important ones?

Solution:

Quality/precision of checks
Length of data-flows
Ranking of sources/sinks

How to explain findings to customers

Problem: Customers need to understand findings to prioritise them as well as develop fixes

Solution:

(Static) fix recommendations pointing to standard recommendations
Computing bet fix locations

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 74

Outline

10 Why is Static Analysis Hard (Vendor Perspective)?

11 Why is Static Analysis Hard (User Perspective)?
A Selection of Open Issues
False Positives and False Negatives
Evaluating Static Analysis Tools
Changing/Improving Tool Configurations
Conclusion and Recommendations

Why is Static Analysis Hard (User Perspective)? A Selection of Open Issues

A Selection of Challenges for Users

Estimating the risk of not fixing security issues is hard

How to prioritize security vs. functionality
In case of doubt, functionality wins

Pushing SAST across the software supply chain

Consumed software (OSS, third-party products)
SAP Customers, partners, and OEM products

Huge and hybrid multi-language applications

Client-server applications
Web-frameworks

Dynamic programming paradigms and languages

JavaScript, Ruby, etc.

Lack of standardized regression test suites

Different tools
Different versions of the same tool

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 76

Why is Static Analysis Hard (User Perspective)? A Selection of Open Issues

A Selection of Challenges for Users

Estimating the risk of not fixing security issues is hard

How to prioritize security vs. functionality
In case of doubt, functionality wins

Pushing SAST across the software supply chain

Consumed software (OSS, third-party products)
SAP Customers, partners, and OEM products

Huge and hybrid multi-language applications

Client-server applications
Web-frameworks

Dynamic programming paradigms and languages

JavaScript, Ruby, etc.

Lack of standardized regression test suites

Different tools
Different versions of the same tool

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 76

Why is Static Analysis Hard (User Perspective)? A Selection of Open Issues

A Selection of Challenges for Users

Estimating the risk of not fixing security issues is hard

How to prioritize security vs. functionality
In case of doubt, functionality wins

Pushing SAST across the software supply chain

Consumed software (OSS, third-party products)
SAP Customers, partners, and OEM products

Huge and hybrid multi-language applications

Client-server applications
Web-frameworks

Dynamic programming paradigms and languages

JavaScript, Ruby, etc.

Lack of standardized regression test suites

Different tools
Different versions of the same tool

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 76

Why is Static Analysis Hard (User Perspective)? A Selection of Open Issues

A Selection of Challenges for Users

Estimating the risk of not fixing security issues is hard

How to prioritize security vs. functionality
In case of doubt, functionality wins

Pushing SAST across the software supply chain

Consumed software (OSS, third-party products)
SAP Customers, partners, and OEM products

Huge and hybrid multi-language applications

Client-server applications
Web-frameworks

Dynamic programming paradigms and languages

JavaScript, Ruby, etc.

Lack of standardized regression test suites

Different tools
Different versions of the same tool

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 76

Why is Static Analysis Hard (User Perspective)? A Selection of Open Issues

A Selection of Challenges for Users

Estimating the risk of not fixing security issues is hard

How to prioritize security vs. functionality
In case of doubt, functionality wins

Pushing SAST across the software supply chain

Consumed software (OSS, third-party products)
SAP Customers, partners, and OEM products

Huge and hybrid multi-language applications

Client-server applications
Web-frameworks

Dynamic programming paradigms and languages

JavaScript, Ruby, etc.

Lack of standardized regression test suites

Different tools
Different versions of the same tool

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 76

Outline

10 Why is Static Analysis Hard (Vendor Perspective)?

11 Why is Static Analysis Hard (User Perspective)?
A Selection of Open Issues
False Positives and False Negatives
Evaluating Static Analysis Tools
Changing/Improving Tool Configurations
Conclusion and Recommendations

Why is Static Analysis Hard (User Perspective)? False Positives and False Negatives

Pragmatics: False Positives (Unwanted Findings)

An informal definition:

If a static analysis tools reports a finding, this finding

can be exploitable (true positive)
cannot be exploitable (false positive)

If a static analysis tools does not reports a finding,

the code is secure (true negative)
the code contains a vulnerability (false negative)

Let us take the view point of a

Developer: “I want a tool with zero false positives!”
False positives create unnecessary effort

Security expert: “I want a tool with zero false negatives!”
False negatives increase the overall security risk

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 78

Why is Static Analysis Hard (User Perspective)? False Positives and False Negatives

False Negatives
Reasons and Recommendations (Examples)

Fundamental: under-approximation of the tool (method), e.g.,

missing language features (might intercept data flow analysis)
missing support for complete syntax (parsing errors)

Report to tool vendor

Configuration: lacking knowledge of insecure frameworks, e.g.,

insecure sinks (output) and sources (input)

Improve configuration

Unknown security threats: For us, e.g.,

XML verb tampering

Develop new analysis for tool (might require support from tool vendor)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 79

Why is Static Analysis Hard (User Perspective)? False Positives and False Negatives

False Positives
Reasons and Recommendations (Examples)

Fundamental: over-approximation of the tool (method), e.g.,

pointer analysis
call stack
control-flow analysis

Report to tool vendor

Configuration: lacking knowledge of security framework, e.g.,

sanitation functions
secure APIs

Improve configuration

Mitigated by attack surface: strictly speaking a true finding, e.g,

No external communication due to firewall
SQL injections in a database admin tool

Should be fixed.
In practice often mitigated during audit, or local analysis configuration

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 80

Why is Static Analysis Hard (User Perspective)? False Positives and False Negatives

Prioritisation of Findings
A Pragmatic Solution for Too Many Findings

What needs to be audited

What needs to be fixed

as security issue
(response effort)
quality issue

Different rules for

old code
new code

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 81

Why is Static Analysis Hard (User Perspective)? False Positives and False Negatives

Prioritisation of Findings
A Pragmatic Solution for Too Many Findings

What needs to be audited

What needs to be fixed

as security issue
(response effort)
quality issue

Different rules for

old code
new code

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 81

Why is Static Analysis Hard (User Perspective)? False Positives and False Negatives

Prioritisation of Findings
A Pragmatic Solution for Too Many Findings

What needs to be audited

What needs to be fixed

as security issue
(response effort)
quality issue

Different rules for

old code
new code

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 81

Why is Static Analysis Hard (User Perspective)? False Positives and False Negatives

Prioritisation of Findings
A Pragmatic Solution for Too Many Findings

What needs to be audited

What needs to be fixed

as security issue
(response effort)
quality issue

Different rules for

old code
new code

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 81

Outline

10 Why is Static Analysis Hard (Vendor Perspective)?

11 Why is Static Analysis Hard (User Perspective)?
A Selection of Open Issues
False Positives and False Negatives
Evaluating Static Analysis Tools
Changing/Improving Tool Configurations
Conclusion and Recommendations

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

SAP Development Experienced a Change in 2012/2013

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 83

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

In 2012: Rumours Began to Spread

“ The existing solution does not work for JavaScript!

It looks like the existing solution

reports less issues per line of code (compared to Java, C/C++, . . .)

has some noise checks

We need to make ourselves aware that

scanning JavaScript is easy (compared to Java, C/C++)

fewer reported issues allow for a more diligent audit

Food for thought:

many issues being report (without careful review)
might result in a false sense of security

due to low effort, it might still be valuable (good cost-benefit ratio)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 84

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

In 2012: We Asked Ourselves

Is SCA is useful for JavaScript?

Yes: Serious flaws are found and fixed!

Are there better SCA Tools available?

Checkmarx, Fortify, IBM AppScan Source Edition

Can we use the tools more effectively and efficiently?

Most likely, yes

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 85

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

In 2012: We Asked Ourselves

Is SCA is useful for JavaScript?
Yes: Serious flaws are found and fixed!

Are there better SCA Tools available?

Checkmarx, Fortify, IBM AppScan Source Edition

Can we use the tools more effectively and efficiently?

Most likely, yes

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 85

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

In 2012: We Asked Ourselves

Is SCA is useful for JavaScript?
Yes: Serious flaws are found and fixed!

Are there better SCA Tools available?
Checkmarx, Fortify, IBM AppScan Source Edition

Can we use the tools more effectively and efficiently?

Most likely, yes

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 85

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

In 2012: We Asked Ourselves

Is SCA is useful for JavaScript?
Yes: Serious flaws are found and fixed!

Are there better SCA Tools available?
Checkmarx, Fortify, IBM AppScan Source Edition

Can we use the tools more effectively and efficiently?
Most likely, yes

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 85

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

In 2013: What Tools Were Available

Our market study revealed three classes of tools:

Scale-able analyzers with a broad security scope

Fortify
Checkmarx
IBM AppScan Source Edition

Light-weight analyzers

JSPrime (focused on DOM-based XSS)
JSLint (very useful, focused on coding styles)
HSInt (early stage, extensible JSLint)
YASCA (simple grep)
. . .

Research prototypes

TAJS (scalability – jQuery?)
. . .

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 86

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

In 2013: Evaluation

We evaluated in detail:

Fortify

Checkmarx

IBM AppScan Source Edition

For all tools, we used

most sensitive “default” configuration
(no SAP template/filters)

the same evaluation targets

library of JavaScript “challenges” (self-made)
three (fourth ongoing) SAP applications of different size
(including one with server-side JavaScript using the XS Engine)
detailed comparison for

XSS-variants
All findings of the two topmost priorities (high)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 87

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

Evaluation Approach For Direct Tool Comparisons

Assume we want to compare tool (configuration) A and B:

1 Analyse same test target with both tools (configurations)

2 For all findings (or well-defined subset, e.g., one vulnerability type):

1 Ignore all findings reported by both tools (configurations)
(Regardless if you use A or B, you need to cope with these findings)

2 Analyse all findings only reported by A

True positives of A are false negatives for B

3 Analyse all findings only reported by B

True positives of B are false negatives for A

3 Compare the number of false/true positives for both tools
(how to weight — depends on your actual efforts . . .)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 88

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

In 2013: A First Evaluation Result

“ No tool is perfect (for us) in its default configuration

For real SAP Applications,

there is no clear winner in the category “JavaScript semantics”
interesting difference in terms of available checks (categories)

Important follow-up:
How can we adapt the tools to our needs?

We tried to write custom checks/rules for two test cases

an eval-example
an SQL-injection example

Only one tool (partially) successful

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 89

Why is Static Analysis Hard (User Perspective)? Evaluating Static Analysis Tools

Generalised Evaluation and Roll-out Approach

1 Identify need

2 Market research

3 For a larger set of candidates:
Limited evaluation by central security team based on

artificial test cases
one or two selected SAP applications

4 For a smaller set of candidates:
Proof-of-Concept (pilot) with SAP development team and vendor

5 In case of success (roll-out decision):

Ramp-up projects on a per project/team basis
Adaption to SAP technologies
Integration into SAP build systems, IDEs, reporting, . . .

Note, step 1) and 2) are sometimes replaced by vendor marketing . . .

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 90

Outline

10 Why is Static Analysis Hard (Vendor Perspective)?

11 Why is Static Analysis Hard (User Perspective)?
A Selection of Open Issues
False Positives and False Negatives
Evaluating Static Analysis Tools
Changing/Improving Tool Configurations
Conclusion and Recommendations

Why is Static Analysis Hard (User Perspective)? Changing/Improving Tool Configurations

Insight: Changing/Improving Tool Configurations
Fortify

Report all occurrences where the first argument to system can be influenced by an attacker
(input not sanitised)

<?xml version="1.0" encoding="UTF-8"?>
<DataflowSinkRule formatVersion="3.2" language="cpp">
<MetaInfo>
<Group name="package">C Core</Group>

</MetaInfo>
<RuleID>AA212456-92CD-48E0-A5D5-E74CC26A276F</RuleID>
<VulnKingdom>Input Validation and Representation</VulnKingdom>
<VulnCategory>Command Injection</VulnCategory>
<DefaultSeverity>4.0</DefaultSeverity>
<Description ref="desc.dataflow.cpp.command_injection"/>
...

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 92

Why is Static Analysis Hard (User Perspective)? Changing/Improving Tool Configurations

Insight: Changing/Improving Tool Configurations
Fortify

Report all occurrences where the first argument to system can be influenced by an attacker
(input not sanitised)

...
<Sink>
<InArguments>0</InArguments>
<Conditional>
<Not>
<TaintFlagSet taintFlag="VALIDATED_COMMAND_INJECTION"/>

</Not>
</Conditional>

</Sink>
<FunctionIdentifier>
<FunctionName>
<Value>system</Value>

</FunctionName>
</FunctionIdentifier>
</DataflowSinkRule>

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 93

Why is Static Analysis Hard (User Perspective)? Changing/Improving Tool Configurations

Insight: Changing/Improving Tool Configurations
Checkmarx

Report all occurrences where the first argument to system can be influenced by an attacker
(input not sanitised)

CxList inputs = Find_Inputs();
CxList validSanitation = getSanitizers()
CxList SystemCalls = All.FindByShortName("system")
CxList output = All.GetParameters(SystemCalls, 0));

result = outputs.InfluencedByAndNotSanitized(inputs, validSanitation);

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 94

Outline

10 Why is Static Analysis Hard (Vendor Perspective)?

11 Why is Static Analysis Hard (User Perspective)?
A Selection of Open Issues
False Positives and False Negatives
Evaluating Static Analysis Tools
Changing/Improving Tool Configurations
Conclusion and Recommendations

Why is Static Analysis Hard (User Perspective)? Conclusion and Recommendations

Conclusion

Static analysis is a challenging problem both theoretically and pragmatically

Recommendations for users

Adapt the tools to your needs!
Provide clear guidelines which findings are important to your organisation!
Choose your tools carefully
Scan daily (or at least weakly)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 96

Part IV

Outlook

Outline

12 A Few Notes on Practical JavaScript Challenges

13 Analysing Hybrid Mobile Apps

A Few Notes on Practical JavaScript Challenges

JavaScript: Binding and External Functions

var docref = document.location.href
var input = docref.substring(docref.indexOf("default=")+8);
var fake = function (x) {return x;}
var cleanse = function (x) {return ’hello world’;}

var uinput = unknown(input); // unknown is nowhere defined
document.write(uinput); // secure!?

var finput = fake(input);
document.write(finput); // not secure

var cinput = cleanse(input);
document.write(cinput); // secure

var extfinput = extfake(input); // defined externally (part of scan)
document.write(extfinput); // not secure

var extcinput = extcleanse(input); defined externally (part of scan)
document.write(extcinput); // secure

var nobodyKnows = toCleanOrNotToCleanse(input); multiply defined (underspecified)
document.write(nobodyKnows); // not secure!?

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 99

A Few Notes on Practical JavaScript Challenges

Functions as First-Class Objects

var href = document.location.href;
var unsafeInput = href.substring(href.indexOf("default=")+8) // unsafe input
var safeInput = "1+2"; // safe input

// aliasing eval
var exec = eval;
var doit = exec;

var func_eval1 = function (x) {eval(x);};
var func_eval2 = function (x,y) {eVaL(y);};

var func_eval_eval = function (x) {func_eval1(x);};
var func_doit = function (x) {doit(x);};
var func_exec = function (x) {exec(y);};
var run = func_eval1;
var inject_code = func_exec;

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 100

A Few Notes on Practical JavaScript Challenges

CSRF Prevention

var request = {
headers : {

"X-Requested-With" : "XMLHttpRequest",
"Content-Type" : "application/atom+xml",
"X-CSRF-Token" : "Fetch"

},
};
if (Appcc.CSRFToken)

var request = {
headers : {

"X-Requested-With" : "XMLHttpRequest",
"Content-Type" : "application/atom+xml",
"X-CSRF-Token" : Appcc.CSRFToken

},
};

else var request = {
headers : {

"X-Requested-With" : "XMLHttpRequest",
"Content-Type" : "application/atom+xml",
"X-CSRF-Token" : "etch"

},
};

var response = this.oServiceManager.read(request, this, this.batch, this.busy);

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 101

A Few Notes on Practical JavaScript Challenges

Prototype-based Inheritance

var vl = new sap.ui.commons.layout.VerticalLayout();
sap.ui.core.Control.extend("foobar.Label", {

metadata : {
properties : {

"text" : "string"
}

},
renderer : function(oRm, oControl) {

oRm.write("XSSLabel: ");
oRm.write(oControl.getText());
oRm.write("");

}
});
var p = jQuery.sap.getUriParameters().get("xss");
vl.addContent(new foobar.Label({text:p}));
return vl;

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 102

Outline

12 A Few Notes on Practical JavaScript Challenges

13 Analysing Hybrid Mobile Apps
Motivation: Hybrid Mobile Apps and Their Security Challenges
Static Analysis for Hybrid Apps: Building a unified call graph
An assessment of hybrid Apps (in Google Play)
Recommendations & Conclusions

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

What is a Hybrid App?
Native, HTML5, or hybrid

Native apps
Java \ Swift \ C#

Developed for a specific
platform

All features available

+

Hybrid apps
HTML5, JS, and native

Build once, run everywhere

Access to device features
through plugins

Web apps
HTML5 and JS

Hosted on server, all
platforms

No access to device
features

Platform-specific Platform-independent

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 104

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

What is a Hybrid App?
Native, HTML5, or hybrid

Native apps
Java \ Swift \ C#

Developed for a specific
platform

All features available

+

Hybrid apps
HTML5, JS, and native

Build once, run everywhere

Access to device features
through plugins

Web apps
HTML5 and JS

Hosted on server, all
platforms

No access to device
features

Platform-specific Platform-independent

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 104

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

The architecture of Apache Cordova

Android Platform

HTML Android App

A
n
d

ro
id

 C
o
rd

o
v
a
 C

o
n
ta

in
e
r

W
e
b

 A
rc

h
it

e
ct

u
re

UI Layer (HTML, CSS, JS)

Application Logic in JS

Android WebView

Camera

Cordova Plugins

Custom Plugins

In-App Browser

Geolocation

Media File

Vibration

Network

Device Motion

Cordova
Native API

H
M

T
L5

/J
S

A
P
I

C
o
rd

o
v
a

JS
 A

P
I

A
n
d
ro

id
A

P
Is

A
n
d

ro
id

A
P
Is

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 105

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

Example: Get Contacts

function showPhoneNumber(name) {
var successCallback = function(contact) {

alert("Phone number: " + contacts.phone);
}
exec(successCallback, null, "ContactsPlugin", "find",

[{"name" : name}]);
}

class ContactsPlugin extends CordovaPlugin {
boolean execute(String action, CordovaArgs args, CallbackContext callbackContext) {

if ("find".equals(action)) {
String name = args.get(0).name;
find(name, callbackContext);

} else if ("create".equals(action)) ...
}
void find(String name, CallbackContext callbackContext) {

Contact contact = query("SELECT ... where name=" + name);
callbackContext.success(contact);

}
}

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 106

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

From Apache Cordova to SAP Kapsel (Fiori/Kapsel Browser)

Based on Apache Cordova
(FOSS Framework)

Apache Cordova plus plugins for

Encrypted Storage
Authentication
Logging
. . .

Enterprise features

Single sign-on
Application management (SMP)
Mobile Device Management (MDM)

SAP UI5
(JavaScript framework for UIs)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 107

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

Why is it hard to ensure the security of hybrid apps

Web technologies (i.e., JavaScript)

lack of typing, higher order functions, asynchronous programming models

highly dynamic (e.g., eval(. . .), dynamic loading)

. . .

Large Libraries and Modules

large (≈ 100kLOC) third party (FOSS, proprietary) libraries

both native (Java) and JavaScript

complex core framework

. . .

Cross-Language-Analysis

many data-flows across language boundaries

datatype conversion

not only for accessing sensors (e,g, session plugin requires > 10 language switches)

. . .
A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 108

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

Exploiting the JavaScript to Java Bridge (CVE-2013-4710)

We can expose Java methods in JavaScript

foo.addJavascriptInterface(new FileUtils(), "FUtil");

And use them in JavaScript easily

<script type="text/javascript">// <![CDATA[
filename = ’/data/data/com.livingsocial.www/’ + id +’_cache.txt’;
FUtil.write(filename, data, false);
//]]></script>

Which might expose much more than expected

function execute(cmd){
return
window._cordovaNative.getClass().forName(’java.lang.Runtime’).

getMethod(’getRuntime’,null).invoke(null,null).exec(cmd);
}

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 109

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

Never, really never, use http without SSL

Thanks to Jens Heider from Fraunhofer SIT.

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 110

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

Never, really never, use http without SSL

Thanks to Jens Heider from Fraunhofer SIT.

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 110

Analysing Hybrid Mobile Apps Motivation: Hybrid Mobile Apps and Their Security Challenges

What did we learn from this

There are many subtle things to consider:

always use https and validate certificates

dynamically loaded code from third parties can be dangerous (even if “iframed”)

in Cordova apps, XSS attackers can be very powerful

ship only the plugins that you need (unused plugins can still be exploited)

if you need only limited functionality, secure the plugin in the native/Java code

Did you know that

<application android:debuggable="true" />

disables certificates checks in WebViews!

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 111

Outline

12 A Few Notes on Practical JavaScript Challenges

13 Analysing Hybrid Mobile Apps
Motivation: Hybrid Mobile Apps and Their Security Challenges
Static Analysis for Hybrid Apps: Building a unified call graph
An assessment of hybrid Apps (in Google Play)
Recommendations & Conclusions

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

How to help the developer?

We want to find bugs in Cordova apps

Idea: Static program analysis, build a call graph of the Cordova app

But how to find cross-language calls?

Four heuristics that model the Cordova framework:

ConvertModules

ReplaceCordovaExec

FilterJavaCallSites

FilterJSFrameworks

Based on examination of real Cordova apps
Exploit frequent coding patterns to improve precision

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 113

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

ConvertModules

define("com.foo.contacts", function(require, exports, module) {
exports.find = function(successCallback, name) {

exec(successCallback, null, "ContactsPlugin", "find",
[{"name" : name}]);

}
});
...
var successCallback = function(contact) {

alert("Phone number: " + contacts.phone);
}
plugins.contacts.find(successCallback, "Peter");

Problem:

Not all callback functions are defined within the plugin

Difficult to track callback functions from app code

Solution:

Substitute dynamic mechanism with unique, global variable

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 114

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

ConvertModules

define("com.foo.contacts", function(require, exports, module) {
@plugins.contacts.find@ = function(successCallback, name) {

exec(successCallback, null, "ContactsPlugin", "find",
[{"name" : name}]);

}
});
...
var successCallback = function(contact) {

alert("Phone number: " + contacts.phone);
}
plugins.contacts.find(successCallback, "Peter");

Problem:

Not all callback functions are defined within the plugin

Difficult to track callback functions from app code

Solution:

Substitute dynamic mechanism with unique, global variable

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 114

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

ConvertModules: results

Most useful for

small plugins
more precise analysis

Allowed finding of callback functions in app code

Less errors due to less ambiguity of dynamic mechanism

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 115

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

ReplaceCordovaExec

function showPhoneNumber(name) {
var successCallback = function(contact) {

alert("Phone number: "+contacts.phone);
}

exec(successCallback, null, "ContactsPlugin", "find",
[{"name" : name}]);

}

Problem:

Callback call sites are hard to find

No context-sensitivity

Solution:

Stub the exec method

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 116

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

ReplaceCordovaExec

function showPhoneNumber(name) {
var successCallback = function(contact) {

alert("Phone number: "+contacts.phone);
}
function stub1(succ, fail) {

succ(null);
fail(null);

}
stub1(successCallback, null, "ContactsPlugin", "find",

[{"name" : name}]);
}

Problem:

Callback call sites are hard to find

No context-sensitivity

Solution:

Stub the exec method

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 116

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

ReplaceCordovaExec: Results

Neccessary to find any Java to JavaScript calls

Most apps use exec to communicate, only some bypass it

Inexpensive way to get context-sensitivity where it is needed the most

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 117

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

FilterJavaCallSites

class ContactsPlugin extends CordovaPlugin {
boolean execute(String action, CordovaArgs args, CallbackContext callbackContext) {

if ("find".equals(action)) {
String name = args.get(0).name;
find(name, callbackContext);

} else if ("create".equals(action)) ...
}
void find(String name, CallbackContext callbackContext) {

Contact contact = query("SELECT ... where name=" + name);
callbackContext.success(contact);

}
}

Problem:

How to determine the targets of the callbackContext calls?

Can we use the pattern of the action usage?

Solution:

Determine which callbackContext calls are reachable
A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 118

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

FilterJavaCallSites: details

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 119

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

FilterJavaCallSites: details

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 119

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

FilterJavaCallSites: details

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 119

Analysing Hybrid Mobile Apps Static Analysis for Hybrid Apps: Building a unified call graph

FilterJavaCallSites: results

Developers all use action variable similarly

Therefore: Many incorrect edges avoided

But: A few calls from Java to JavaScript are missed now

Some store the callbackContext and call asynchronously

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 120

Outline

12 A Few Notes on Practical JavaScript Challenges

13 Analysing Hybrid Mobile Apps
Motivation: Hybrid Mobile Apps and Their Security Challenges
Static Analysis for Hybrid Apps: Building a unified call graph
An assessment of hybrid Apps (in Google Play)
Recommendations & Conclusions

Analysing Hybrid Mobile Apps An assessment of hybrid Apps (in Google Play)

What we where interested in

Main goals:

Understand the use of Cordova

Learn requirements for Cordova security testing tools

Looking for answers for questions like

How many apps are using Cordova?

How is Cordova used by app developers?

Are cross-language calls common or not?

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 122

Analysing Hybrid Mobile Apps An assessment of hybrid Apps (in Google Play)

What we did

Selection of apps
all apps that ship Cordova from Google’s Top 1000:

100 apps ship Cordova plugins
only 50 actually use Cordova (5%)

three selected apps from SAP (using SAP Kapsel)

one artificial test app (to test our tool)

Development of a static analysis tool

analysing Android apps (*.apk files)

specialised in data-flows from Java to JavaScript and vice versa

based on WALA

in addition: list used plugins

Manual analysis of 8 apps (including one from SAP)

to understand the use of Cordova

to assess the quality of our automated analysis
A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 123

Analysing Hybrid Mobile Apps An assessment of hybrid Apps (in Google Play)

What we have learned: plugin use

Plugins are used for

accessing device information

showing native dialog boxes and
splash screens

accessing network information

accessing the file storage

accessing the camera

. . .

Plugin

device 52%
inappbrowser 50%
dialogs 40%
splashscreen 36%
network-information 28%
file 28%
console 24%
camera 22%
statusbar 22%
PushPlugin 22%

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 124

Analysing Hybrid Mobile Apps An assessment of hybrid Apps (in Google Play)

What we have learned: app size and cross-language calls

App size:

mobile apps are not
always small

SAP apps seem to be
larger than the average

Cross-language calls:

calls from Java to JS:
very common

calls from JS to Java:
surprisingly uncommon

App Category Java2JS JS2Java JS [kLoC] Java [kLoC]

sap01 Finance 2 12 35.5 17.0
sap02 Business 20814 39 345.3 53.5
sap03 Business 9531 75 572.3 135.8

app01 Finance 9 13 26.3 17.8
app02 Finance 2 10 11.2 16.8
app03 Social 2349 31 4.6 103.7
app04 Business 1 6 37.5 16.8
app05 Finance 6 26 20.0 44.8
app06 Finance 693 70 30.4 24.3
app07 Travel & Local 3430 43 129.0 304.0
app08 Entertainment 14220 67 36.7 23.0
app09 Lifestyle 51553 89 36.3 44.7
app10 Finance 8 36 43.7 18.4
app11 Business 0 0 14.0 438.9
...

...
...

...
...

...

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 125

Analysing Hybrid Mobile Apps An assessment of hybrid Apps (in Google Play)

Recall and Precision
Excerpt

Recall:

Correctly reported calls

All reported calls

Precision:

Correctly reported calls

Calls actually present

App kLoC kNodes Plugins Recall Precision Calls

app01 43 9 5 33% 75% 17
app02 27 8 4 100% 66% 13
app03 106 18 8 1% 93% 61
app04 53 14 3 100% 100% 7
app05 64 10 7 33% 66% 29
app06 53 8 12 35% 97% 316
app08 58 14 11
app20 68 10 15
app22 20 9 3
app25 161 59 2
app37 280 65 18
app38 77 56 6
app45 18 7 4

sap01 52 19 6 100% 66% 15
sap02 398 15 17
sap03 708 118 15

dvhma 17 7 4 100% 100% 15
A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 126

Analysing Hybrid Mobile Apps An assessment of hybrid Apps (in Google Play)

What we have learned: exceptional behaviours

Cordova use:

no HTML/JS in the app

no use of Cordova

Plugin use:

often callbacks are not used
(missing error handling)

plugins are modified

plugins might use JNI

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 127

Outline

12 A Few Notes on Practical JavaScript Challenges

13 Analysing Hybrid Mobile Apps
Motivation: Hybrid Mobile Apps and Their Security Challenges
Static Analysis for Hybrid Apps: Building a unified call graph
An assessment of hybrid Apps (in Google Play)
Recommendations & Conclusions

Analysing Hybrid Mobile Apps Recommendations & Conclusions

Recommendations: The (hopefully) obvious parts (1/2)

Cordova apps are Web applications:

do secure JavaScript programming

content security policy, same origin policy

. . .

Warning: the WebView sandbox is not as strong as on desktop Web browsers

Cordova apps are native/Java apps:

do secure Java/Objective-C/. . . programming

do not trust validations done in the JavaScript part of the plugin

. . .

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 129

Analysing Hybrid Mobile Apps Recommendations & Conclusions

Recommendations: The (hopefully) obvious parts (2/2)

Cordova apps are mobile applications:

permissions

. . .

Cordova apps are cordova applications:

plugin whitelisting

read the Cordova security guide:
https://cordova.apache.org/docs/en/5.4.0/guide/appdev/security/index.html

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 130

https://cordova.apache.org/docs/en/5.4.0/guide/appdev/security/index.html

Analysing Hybrid Mobile Apps Recommendations & Conclusions

Recommendation: Use the latest framework version

Frameworks (and the underlying OS) can have vulnerabilities:

use the latest version of Cordova (SAP Kapsel)

monitor for public know vulnerabilities (e.g., CVEs)

Framework vulnerabilities can be severe:

Java code execution via JavaScript: CVE-2013-4710
Avoid Cordova on Android below 4.1 & use AddJavaScriptInterface annotation

(incomplete) overview: https://www.cvedetails.com/vulnerability-list/vendor_

id-45/product_id-27153/Apache-Cordova.html

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 131

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4710
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-27153/Apache-Cordova.html
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-27153/Apache-Cordova.html

Analysing Hybrid Mobile Apps Recommendations & Conclusions

Summary

Hybrid mobile apps are getting more popular

they are recommended at SAP
everything running in the Kapsel/Fiori Browser is a hybrid app

Securing hybrid apps is a challenge and requires expertise in

Web application security
native/Java security
mobile security
Cordova/SAP Kapsel security

Check the Cordova security guide:
https://cordova.apache.org/docs/en/5.4.0/guide/appdev/security/index.html

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 132

https://cordova.apache.org/docs/en/5.4.0/guide/appdev/security/index.html

Part V

Conclusions

Conclusion and Future Work

Conclusion

Static and dynamic security testing approaches are an important means for improving
software security.

From an industrial perspective

They can be rolled out to 25 000 developers, but it is not easy

Still problems that need to be solved
On the management/organizational level
On the technical level

From an academic (researcher) perspective

While here is a wealth of literature, there are still many open questions

Interesting area
crossing the boundary between verification and falsification
combining dynamic and static approaches
security and software/language engineering (“secure by construction”)

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 134

Thank you for your attention!
Any questions or remarks?

Contact:
Dr. Achim D. Brucker
Department of Computer Science
University of Sheffield
Regent Court
211 Portobello St.
Sheffield S1 4DP
UK

Phone: +44 114 22 21806

https://de.linkedin.com/in/adbrucker
https://www.brucker.uk
https://www.logicalhacking.com

a.brucker@sheffield.ac.uk

https://de.linkedin.com/in/adbrucker
https://www.brucker.uk
https://www.logicalhacking.com
mailto:a.brucker@sheffield.ac.uk

Conclusion and Future Work

Bibliography I

Ruediger Bachmann and Achim D. Brucker.

Developing secure software: A holistic approach to security testing.

Datenschutz und Datensicherheit (DuD), 38(4):257–261, April 2014.

Achim D. Brucker and Michael Herzberg.

On the static analysis of hybrid mobile apps: A report on the state of apache cordova nation.

In Juan Caballero and Eric Bodden, editors, International Symposium on Engineering Secure Software and Systems
(ESSoS), Lecture Notes in Computer Science. Springer-Verlag, 2016.

Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, and Achim D. Brucker.

Time for addressing software security issues: Prediction models and impacting factors.

Technical Report tud-cs-2015-1268, Technische Universität Darmstadt, November 2015.

Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, Achim D. Brucker, and Philip Miseldine.

Factors impacting the effort required to fix security vulnerabilities: An industrial case study.

In Colin Boyd and Danilo Gligoriski, editors, Information Security Conference (isc 2015), Lecture Notes in Computer
Science. Springer-Verlag, 2015.

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 136

Conclusion and Future Work

Bibliography II

Achim D. Brucker and Uwe Sodan.

Deploying static application security testing on a large scale.

In Stefan Katzenbeisser, Volkmar Lotz, and Edgar Weippl, editors, gi Sicherheit 2014, volume 228 of Lecture Notes
in Informatics, pages 91–101. gi, March 2014.

Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci.

On the security cost of using a free and open source component in a proprietary product.

In Juan Caballero and Eric Bodden, editors, International Symposium on Engineering Secure Software and Systems
(ESSoS), Lecture Notes in Computer Science. Springer-Verlag, 2016.

Michael Felderer, Matthias Büchlein, Martin Johns, Achim D. Brucker, Ruth Breu, and Alexander Pretschner.

Security testing: A survey.

Advances in Computers, 101, 2016.

A.D. Brucker The University of Sheffield Static Analysis February 8–12., 2016 137

	Background, Motivation, and An Introduction to Pragmatic Static Analysis
	Background
	Personal Background

	Motivation
	Why is Software Security Important to Enterprises
	What Are Causes For Vulnerabilities?
	Security Critical Systems Are Small …

	An Introduction to Pragmatic Static Analysis (Code Scanning)
	Introduction: Pragmatic Static Code Analysis
	What We Want to Find
	The Tool Box of Pragmatic Static Analysis
	Let's Look at Enterprise-read Scan Tools

	Conclusion

	Applying Static (And Dynamic) Analysis At SAP
	Introducing Static Analysis
	Application Security at SAP
	How Application Security is Organized at SAP
	(Risk-based) Security Testing at SAP
	Measuring Success and Identifying White Spots

	Lesson's Learned
	Industry Trends
	Agile Development (Towards SecDevOps)
	From Dynamic to Static and Back Again

	Conclusion

	Problems in Practise(And Pragmatic Mitigation Strategies)
	Why is Static Analysis Hard (Vendor Perspective)?
	Why is Static Analysis Hard (User Perspective)?
	A Selection of Open Issues
	False Positives and False Negatives
	Evaluating Static Analysis Tools
	Changing/Improving Tool Configurations
	Conclusion and Recommendations

	Outlook
	A Few Notes on Practical JavaScript Challenges
	Analysing Hybrid Mobile Apps
	Motivation: Hybrid Mobile Apps and Their Security Challenges
	Static Analysis for Hybrid Apps: Building a unified call graph
	Heuristics: ConvertModules
	Heuristics: ReplaceCordovaExec

	An assessment of hybrid Apps (in Google Play)
	Recommendations & Conclusions

	Conclusions
	Conclusion and Future Work

